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Have you ever wondered in how many different ways,  w, you can link a number of identical circles, n, 
together so that every circle links thru every other circle?  To the writers surprise as n increases w 
becomes more and more difficult to determine.  Since the circles are identical it is helpful, in some 
cases, to put an identifying mark on each circle, such as ‘1’, ‘2’, ‘3’...’n’ . If you can arrange the 
marked circles in a linear marked order and you are able to rearrange the marked circles so that they 
are in a different linear order then you know that at least two linear marked orderings are possible.  
Amazingly when it is possible to arrange the circles in a linear order they have very well behaved 
mathematical properties no matter how different two linkages of n circles are.  In what follows you will
discover this enables rapid calculation of some basic properties of any size linear linkage, just using a 
simple integer construction code.  Beyond this it is an incredible fact that when you get to a linkage of 
seven or more circles it is possible to make the linkage in such a way that a linear arrangement is not 
possible.  This is called a Rogue link.  To add insult to injury it turns out that there are exponentially 
more Rogue links than there are nice linear links.  All these results are quite simple to explain, just read
on.

Define ‘All circle links’ ACL as the set of identical linked circles. The writer is not aware of a 
mathematical symbol for All circle links so for purposes of this paper we will use the notation ACL.  For
research purposes our ACL’s are made by linking identical, solid, circular tori together so that every 
circle links thru every other circle.  Thus ACL without delimiters denotes the set of all possible linked 
circles.  For our purposes it does not include any unlinked circles except for the ACL  set of a one circle. 
A circular torus has major and minor diameters, D and d.  There is no proof given here, but it is 
assumed that the results for linked circles with d>0 will hold as the circles are made thinner and thinner
(D/d made larger) so it is OK to call them circles.   Only a certain maximum, n, of these circles can be 
linked so that every circle links thru every other circle.  This maximum, determined by the ratio D/d, 
has an approximate value of n=(2D/d)-2, so n can be made larger by making d smaller or D larger.  The
reason for this maximum is because as n increases there is less and less room for n-1 circles to pass thru
a single circle due to their thickness or small diameter d.

Given n links, each linking to n-k=q links , then if every link links once through every other link then 
then it does not link through itself, so k=1, and q=n-1.  Since q varies with n but k is constant ACL,k1  

shall be the set of all maximally linked circles.   For instance k2 would mean every circle does not link 
through exactly 2 circles.  Here the ACL,k1  set notation for k1 means k=1.  An example member of 
ACL,q2 would be a circular chain of 4 or more circles where each circle links to its two neighbors.  If q 
is constant k can vary but we will only consider ACL,k1 systems here.  We will use the same shorthand 
for several more ACL variables below.  This way we can talk about different kinds of ACL  sets because 
only the subject variables need to appear.  The Hopf link consists of two linked circles and is the 
simplest nontrivial link[5].  We only encounter the Hopf link for n=2 and do not need it beyond that.  
For linear ACL,k1 and if the circles are thin enough you can lay them out on a surface in a projected flat 
linear array, defined as having the center of each circle lie on a straight line.  When k is 1 and the 
system is linear the circles can often be rotated in a toroidal motion about the circular toroid axis.  
Much of this discussion is about the properties of linear examples from the set of  ACL,k1 links.
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An  ACL,k1 ‘close link’ is defined in this paper as a linkage of two or more circles that are linked so that
each circle twists in the same direction and so that each pair of circles in the close link can be 
manipulated and made to touch around their circular toroidal surface.  We need this definition because 
as will be seen below links of five or more circles can be made where no close links are possible, called
a prime link.

Close links can be seen to twist around each other as shown in Figure 1.   The smallest close link is 
two linked circles.  By laying two circles closely over one another in two ways you can see the circles 
as either having one positive twist or one negative twist [1].  If more circles are added to a close link 
the twist becomes more 'locked in' but can still vary by laying the circles over in different ways.  Close 
links of n links allow the n circles to be placed in any marked order or n factorial possible ways.  The 
absolute total twist is maximum when the entire ACL,k1 link of n circles is a single close link.  A simple 
way of calculating the twist for any linear flat projection ACL ,k1  link will follow below.  For an ACL,k1 
linkage of n circles u is the total number of circles that cannot be made close to any other circle in the 
ACL,k1.    

                                                          ACL,k1,u0,m1,n2=1                          ACL,k1,u0,m1,n14=2

  
Figure 1

Close links of different twists can be linked together in various ways.  This variable is called m and is 
the number of different close links in an ACL,k1, so we have the set ACL,k1,u,m.  For instance you could
have a link where 5 close links twist one way linked to another where 3 close links twist the opposite 
way making m=2, u=0.  It may seem that u and m are redundant used together, but for many links they 
are not redundant.  The next variable is the number of circles in the linkage called n and we have the 
set ACL ,k1,u,m,n.  For our purposes we can let this set equal the number of elements it contains, w, as 
seen in Figure 1 where the left pair shows the only way to link two circles.  The close link at right in 
Figure 1 can be made with either positive or negative twist so it has two elements.  It is evident that if 
m=0 then u=n.  This is called an ACL,k1 prime, mentioned above, where no pair of links are close.  
Finally we have the total twist of the flat projection, 0, +t or -t.  All of these variables, even if you 
include twist can specify one or more different links, w>=1.  This notation provides a handy way of 
proposing different properties to investigate.  Twist for any flat projection can be different depending 
on how the circles lay over each other (as in Fig. 1), but it has well behaved invariant properties for 
linear links which will be revealed below.
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Figure 2

Figure 2 top left and right shows a linear 5 prime linkage of five circles.   Five prime is the smallest 
possible prime so that u=n=5.  Refer to the top left part of Figure 2 to see how a construction code, 
CC, is written for this linkage.  The leftmost circle is in the level 1 z axis position.  The next to leftmost
circle is in the level 3 z axis position and continuing we can write the level, or z axis position of each 
circle moving from left to  right along the x axis as 1,3,5,2,4.  This will be the first row of a CC 
matrix.  It is a convention to put the left circle in the level 1 position when writing the first row of a 
CC matrix.  These matrices will be discussed below.  

The top right part of Figure 2 shows how the fold order, or FO is written based on going along the x 
axis and writing the x position of the first circle in z level 1, then write the next x position of the circle 
in z level 2 and so on.  This is the order of folding of the circles when folding each circle one at a time 
down or toward you.  The bottom part of Figure 2 shows the FO for a 6 prime with marked circles.  As 
you can see you would first be able to fold down(about the x axis) the circle in position one in the listed
fold order then the next circle able to fold is in the listed position 4 and so on.  A prime requires that 
u=n so that no pair of circles can be made close to each other.  This means that any two adjacent 
integers in the construction code or CC must have a difference greater than 1.  This includes the first 
and last integers since these are adjacent by circular permutation.

The twist of a linear ACL,k1 can easily be calculated from the CC.  The twist also has exact invariant 
properties.  Twist can vary depending on how the circles lay over each other, so twist invariance 
depends on lay over position or a sum of lay over positions.  

Calculate the twist of a construction code, CC, by starting at the second number from the left and 
working to the right.  If the second number is greater than the first it adds +1 if less it adds -1.  Now 
compare the third number to the second and first number and add or subtract a one for each if greater or
less.  The fourth number is compared to the third, second and first adding a 1 or -1 each time.  Continue
this for the n circles. This produces a twist number for each circle from circle 2 to circle n by summing 
the 1's found going to the right in each case.  Summing these twist numbers gives the total twist of that 
positional array, or CC of circles.   Here is the method in action using a 5 circle system:
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Given prime CC=1,3,5,2,4 (and n=5 since there are 5 circles)

3>1, t=1  second circle twist is 1
5>3, t=1
5>1  t=1  third circle twist is 2
2<5, t= -1
2<3, t= -1
2>1, t=1  fourth circle twist is -1
4>2, t=1
4<5, t= -1
4>3, t=1
4>1, t=1  fifth circle twist is 2 

This makes the total twist 1+2+-1+2 =+4 for this group of circles in this position.  This calculation can 
be performed in several different ways , comparing left to right, right to left, and so forth, and each way
will always produce the same total twist.  This is because all possible left to right pair comparisons are 
performed.  

It has been found that this twist calculation for any linear ACL,k1 works for any set of positive 
sequential numbers 1 thru n.   If you flip the array over left to right and then determine its new 
construction code, CC, and recalculate the twist it will be the same. For instance rotating 
CC=1,4,6,2,5,3  180 degrees about the z axis renumbers as CC= 4,2,5,1,3,6  and each of these gives a 
twist of +3.  If the numbers of a CC row are listed in reverse order a mirror image linkage results and 
just the sign of the calculated twist reverses.  Since five prime is its own mirror image reversing the CC
or FO numbering results in the same linkage and its total matrix twist(matrix twist explained below) is 
zero.  The twist calculation presented here is based on the accepted twist for two linked loops in a 
planar projection as can be found in reference number [1].  You will also get the same twist when you  
derive the fold order, FO from the CC. then calculate the twist for the FO.  The FO is complementary to
the CC in always producing the same total twist and in other ways.  Fold order can be derived from the 
CC listing as follows.

Given  the CC=1,3,5,2,4  then fold order, FO can now be listed as 1,4,2,5,3 as follows:
1 since 1 in the CC is in position 1
4 since 2 in the CC is in position 4
2 since 3 in the CC is in position 2
5 since 4 in the CC is in position 5
3 since 5 in the CC is in position 3

Note that for certain number sequences CC sometimes exactly equals FO.  This is the case for 
CC=1,4,6,2,5,3=FO=1,4,6,2,5,3

Every CC, FO position of a linear link can manipulated so that the old CC becomes the new FO and the
old FO becomes the new CC.  Therefore FO can be treated as if it were a CC and then calculate its 
twist.

Given FO=1,4,2,5,3 (from CC=1,3,5,2,4)  
4>1, t=1  second circle twist is 1
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2<4, t= -1
2>1, t=1  third circle twist is 0
5>2, t=1
5>4, t=1
5>1, t=1  fourth circle twist is 3
3<5, t= -1
3>2, t=1
3<4, t= -1
3>1, t=1  fifth circle twist is 0

Total twist is therefore =+4 and this is exactly the same as the CC that generated this FO.
Thus t(CC)=t(FO) and is an invariant.  Since we can treat FO as if it were a CC we always have two 
different linear CC, where FO(CC1)=FO1 and FO1=CC2, and FO(CC2)=FO2 and FO2=CC1 exactly.  
This is only works if the leftmost CC code number =1, generally the first row in the fold matrix. Thus 
the FO of a CC represents another linear arrangement of the CC that can be gotten by physically 
moving the circles.  In this sense FO and CC are complementary to each other.  In the case of a close 
link CC1=CC2 so only one CC=FO exists.  For ACLk1 primes, CC1 may or may not equal CC2.  You 
can make a prime where  CC1=FO1=CC2=FO2.  This makes the two CC matrices identical.  In that 
case one way to tell that two linear arrangements are possible is by numbering or marking the 
individual circles, then rearrange the circles to show that two different marked arrangements exist that 
are not just a circular permutations of each other.  A close link of x marked links can have its circles put
in any linear marked order, giving x! possible marked close arrangements for a close link of x links so 
all the circles of a close link can be given the same mark. 

As mentioned above u is the number of circles that are not close to any other circle in the, ACL k1. This 
motivates a search for when u=n meaning an ACL,k1 which has no close circles, or a prime link.  The 
smallest link for which this is possible is when n=5 designated as 5p, five prime.  Since five prime is its 
own mirror image and no other 5p exists it is denoted ACL,k1,u5,m0,n5=1.  You can have a 5p that has 
close links added to it so that you could have ACL,k1,u4,m2,n12,5p=x.  This set having a 5p means that 
each member of the set contains a 5p   as follows:  If you reduce all the close links to one link you 
always stop at 5p. 

Rules for a linear ACL k1 to be prime:    1. The absolute difference between adjacent integers of the 
CC code must be greater than 1, including the leftmost and rightmost integers as these are also adjacent
by circular permutation.  2. The ACL,k1 cannot be a composite of two or more individual prime links 
linked together.  3. An ordinary linear ACL,k1 n prime can be arranged linearly with only two different 
circular linear permutations of the marked circles.  4. A flat linear arrangement must be possible.  If any
close links existed Rule 3 would be broken.  These rules are merely a recipe and have are somewhat 
redundant.
In rule 2 for instance p5#p5 (link a 5 prime to another 5 prime) to give CC=1,3,5,2,4,6,8,10,7,9.  It has 
no close links but the two prime links can be independently rotated about y and z axes and folded over 
allowing extra linear permutations breaking Rule 3.  It is a composite prime link and/or could also be 
called close prime link.  

A method for building an n+1 prime

Two circles at a time are available to fold over in a linear ACL,k1 prime or non prime arrangement.  
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These are the circles with CC level 1 and CC level n and are called naked links.  The two naked links 
represent the two directions of folding about the horizontal x axis.  Folding in one direction n times for 
an n circle ACL,k1 completes one fold cycle in that direction.  So folding in either direction gives 
exactly the same set of n fold arrangements but in a different order.   Of these n-4 produce ends with no
naked end links.  When adding a circle to make an n+1 prime there can be no naked end link as the 
naked end link would form a close link with the new added link.  Since the primes generally have 
exactly two unique CC's this gives 2(n-4) possible positions having no naked end links.  Thus 5p has 
two no naked end link fold positions that can be used to build 6p.  Due to symmetry both of these are 
equivalent providing only one way to make 6p.  Then 6p has four no naked end link fold positions and 
so on.  The other way to find primes is to analyze the number of different ways you can arrange n 
sequential numbers according to the prime rule 1. It is not known if this is sufficient.  For instance 
could moving circles around in a physical linkage bring two of them together into a close link after 
building the link according to a proposed CC code? 

Linear Permutation Matrices    `
 
The marked circles show how the linear primes limit themselves to only two kinds of circular 
permutations and are helpful to record and reconstruct specific arrangements and permutations.  

An nxn matrix is our goal.  To generate the next matrix row of a CC of n links change 1 to n from the 
row above and subtract 1 from the other numbers of the row above for the next row CC.  Continue this 
process for each row.   This is the case since the next row CC is gotten by folding the level 1 circle 
down to become the level n circle.
For FO fold order matrix you can generate each FO row from its corresponding CC row, as already 
shown above.  This can be defined as an operation of FO on CC to get each row, FO(CC1,1) = FO1,1 
FO(CC1,2) = FO1,2 …  
Here is an example matrix for a 7p  with CC=1,5,2,7,3,6,4.  

CC, FO n row matrix
7p LP1=1,2,3,4,5,6,7(circle markings)              7p LP2=1,3,5,7,2,6,4(circle markings)        
7p CC1      twist    7p FO1             twist     7p CC2             twist        7p FO2            twist
1,5,2,7,3,6,4      +7    1,3,5,7,2,6,4       +7      1,3,5,7,2,6,4      +7            1,5,2,7,3,6,4     +7
7,4,1,6,2,5,3    -5    3.5.7.2.6.4.1       -5       7,2,4,6,1,5,3      -5             5,2,7,3,6,4,1      -5
6,3,7,5,1,4,2    -9    5,7,2,6,4,1,3       -9      6,1,3,5,7,4,2      -1             2.7.3.6.4.1.5      -1
5,2,6,4,7,3,1    -5    7,2,6,4,1,3,5       -5       5,7,2,4,6,3,1      -9             7,3,6,4,1,5,2      -9
4,1,5,3,6,2,7   +7    2,6,4,1,3,5,7       +7      4,6,1,3,5,2,7      +3            3,6,4,1,5,2,7      +3 
3,7,4,2,5,1,6      -1    6,4,1,3,5,7,2       -1       3,5,7,2,4,1,6      -1             6,4,1,5,2,7,3      -1
2,6,3,1,4,7,5     +7         4,1,3,5,7,2,6       +7      2,4,6,1,3,7,5      +7            4,1,5,2,7,3,6      +7
        MTT total   +1                                    +1                                +1                                      +1

Matrix  Total Twist Invariance

The matrix total twist, (MTT) is always the same.  This means that MTT is always an invariant constant 
for any CC or FO matrix for any specific linear ACL,k1.  A total of 2n different matrices are possible 
for a linear ACL,k1.  For a prime that has no symmetry and is not its own mirror image each CC matrix 
generated from different FO starting rows will produce columns of row twists that are different, but the 
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MTT  totals of each column, for each matrix will be equal.  For a link that is a single close link there is 
only one matrix because all 2n matrices are alike, just having rows in a different permuted order.   

Each of the two fold order matrices, FO1 and FO2 has n rows each of which can be used as the first 
row for generating a new CC matrix of n rows.  These 2n CC matrix can be called CC1,1, CC1,2,  … 
CC1,n and CC2,1,  CC2,2, … CC2,n.    If a single nxn matrix of these columns of row twists for a set 
of n matrices is built, each row and each column of twists will add to the same total twist, MTT.  Below 
is a matrix of these n matrices with the n row twists built for the FO1 starting row of  the 7p matrix.   
Examination shows all rows to be unique with no circular  permutations of other rows.

FO1 starting CC rows creating n 7x7 matrix 
each with 7 row total twists.
                                                           MTT(matrix totals)
CC1,1 row twists  7,-5,-1,-9,3,-1,7        1
CC1,2 row twists  -5,7,7,-5,3,-5,-1        1
CC1,3 row twists  -9,-1,-5,7,11,-1,-1     1
CC1,4 row twists  -5,-1,-9,-1,-1,11,7     1
CC1,5 row twists  7,7,-5,-1,-5,3,-5        1
CC1,6 row twists  -1,-5,7,7,-1,3,-9        1 
CC1,7 row twists   7,-1,7,3,-9,-9,3        1
Column totals        1, 1, 1,1, 1, 1,1

FO2 starting CC rows creating n 7x7 matrix 
each with 7 row total twists.
                                                          MTT(matrix totals)
CC2,1 row twists  7,-5,-9,-5,7,-1,7        1
CC2,2 row twists  -5,7,-1,-1,7,-5,-1       1
CC2,3 row twists  -1,7,-5,-9,-5,7,7        1
CC2,4 row twists  -9,-5,7,-1,-1,7,3        1
CC2,5 row twists   3,3,11,-1,-5,-1,-9     1
CC2,6 row twists  -1,-5,-1,11,3,3,-9      1 
CC2,7 row twists   7,-1,-1,7,-5,-9,3       1
Column totals         1, 1, 1,1, 1, 1,1

This is an interesting twist invariant.  The reason the matrix total twist is invariant is because a single 
matrix represents a completed fold cycle about the x axis for each possible matrix.  The column twists 
have the same total because they start with the next FO of the first FO matrix as the first CC of the next
matrix.  Each matrix represents a 180 degree rotation of the other matrix about the top left to bottom 
right diagonal and are equal in this sense.  Two different linear ACL,k1 can have the same MTT but may 
have few other similarities unless there is some specified relationship.  For instance some n prime MTT 
can equal zero and so can the MTT of an n circle link having close links with opposing twists.

Note that each new CC row is generated by a 180 degree fold of the topmost link about the x axis while
each new FO can be generated by folding the leftmost link of each CC row 180 degrees about the y 
axis to become the rightmost link.  Of course this could be reversed and the bottom and rightmost links 
could be the folding convention but the mathematical end results would be exactly the same.  Another 
interesting fact about the row total twists is that each of the row twists will either be an odd number or 
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an even number for a given link.  This also means that if the number of additions to calculate a row 
total twist is odd and n is odd then the matrix total twist for that linear ACLk1 cannot be zero.  It can be
as small as 1 or -1 but not zero.  Thus 7 prime and 11 prime or any 7 + 4a prime where a=0,1,2...  
cannot have a zero MTT.

Linkage Average Total Twist, LTT and Average Total Twist per circle, LCT

For linear ACLk1 The linkage total twist is the matrix total twist, MTT, divided by n or the total number 
of circles in the linkage.  Each matrix has n rows so dividing by n gives the average twist, defined as 
the link twist, per row.  We have LTT=MTT/n

Each circle can then be given an average twist called the circle total average twist, LCT=MTT/n^2 or 
LTT/n.  When we calculate the MTT twist for a max twist linkage, where every circle twists in the same 
direction (a close link of n circles or m=1) we find that as circles are added the twist added as n 
increases tends to rise slowly toward a straight line.  A graph for this twist curve can be approximated 
using the matrix calculation methods detailed here.  The LCT for max twist up to 20 circles is:
2 is 0,  3 is 0.1111..,  4 is 0.25,  5 is 0.4,  6 is 0.555..,  7 is 0.71,  8 is 0.875,  9 is 1.03703,   10 is 1.2,
11 is 1.36, 12 is 1.52,  13 is 1.69230...,  14 is 1.857, 15 is 2.0222...,  16 is 2.1875,  17 is 2.35294...
18 is 2.5185...,  19 is 2.6842...,   20 is 2.85  

For linear ACLk1 The increase in twist per circle going from n=15 to n=16 is approximately 0.1653  and
this increment between n=19 and n=20 is 0.1658 or an additional increment of 0.0001 when adding 1 
circle thus tending to a straight line increment.  Rounding down a very conservative estimate is 
LCT=0.16n. Thus if this twist continues to increase at this small but steady pace it must eventually 
become large for each circle in the link as n gets large. Each added circle would add considerably to the
LTT, link total twist.  Each circle of a 10000 link ACLk1 would produce, LCT=0.16*10000=1600 twists 
per circle.  Therefore total link twist, LTT=1600*10000=1.6x 10^8 approximately, and MTT=1.6 x 10^12
approximately.  

Binary Coloring Lay-Over Twist Invariance

Figure 3 shows two equal linear 6 primes with the circles colored light gray on one side and dark grey 
on the other, called a binary coloring.  Since twist is strictly based on how the circles lay over each 
other in a linear array, then a specific marked binary coloring should always produce the same 
calculated twist result.  If the circles are kept dark grey side up this link will always have a twist of +3 
no matter how the circles are permuted linearly.  In the two example photos we have the circle marked 
‘three’ colored light grey and the others are colored dark grey, so all such marked colorings must 
produce the same twist calculation.  Of course if you flip the entire array over so there is one dark grey 
and 5 light grey, the twist calculation is still the same since no folding has taken place, leaving the 
colored marking constant.  This means that each circle, when laid over the opposite way adds or 
subtracts the same amount  of twist no matter where it is located in the linear array.  These observations
can be used to help prove the twist invariance properties.
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Figure 3

Proof of t(CC),=t( FO), Twist Invariance for Linear  ACL,k1

It is necessary to rearrange the CC and FO so that they exchange places with each other without folding
any of the circles.  The CC1 becomes FO2 and FO1 becomes CC2.  The two codes, CC and FO just 
exchange places  One way to obtain such a rearrangement for a linkage is to grasp the upper links with 
your fingers on both sides of the long portion of the link and pull them apart along one axis and then 
press them together along the other axis thereby transferring the linear array of circles to line up along 
the other axis.  This process is shown by the group of five illustrations in Figure 4.  Because of the way 
CC is generated by writing the z level along x and FO is generated by writing the x level along z then 
CC and FO exchange with each other during this operation.  Since this operation does not involve any 
folds of the circles the twist of CC must exactly equal the twist of  FO.   This should always be possible
since the circles are first free to move along one axis across their D diameters, and then along the other 
axis across their D diameters.  Done in practice with several physical links, it always works, if done 
carefully and all links are involved in the pull apart-transfer.  However for more complex links, such as 
composite primes, different groups of links in the different composing primes must be taken into 
account and pulled in their own groups.  At any rate the writer presents this as an initial visual proof.

Figure 4
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Proof of Matrix  Total Twist Invariance , MTT, for Linear  ACL,k1

The set of folds that generate each row of a CC matrix take the binary coloring through a complete set 
of n marked colored projections for each CC matrix.  As shown above, position of the circles does not 
affect twist if the marked coloring is the same for two different flat projections.  This being the case the
MTT has to be constant for each of the 2n  CC matrices.

Toroidal Rotation for Linear ACL,k1  Links

It has been found that if a linear ACLk1 linkage is made of thin circles and held flat in a circular and 
symmetrical arrangement it can appear to turn inside out about its toroid axis.  The circles all move 
simultaneously to opposites sides of the surrounding torus space.  This has been found to work for 
some primes and is thought to work for many different kinds of links.  It is conjectured to be similar to 
the process of changing CC to FO as in Figure 4 where CC to FO would be isomorphic to a ½ toroidal 
rotation.  Of course with more and more circles we need them to be thinner and thinner.   The twist 
remains the same as the linkage rotates, meaning that it is always in the same flat arrangement even 
though the circles are moving about with respect to each other.  It is an open question to prove or 
disprove if this always works for linear linkages.  In some cases various circles would probably need to
reside in and rotate about nested tori for some kinds of linear links.  

 Figure 5

Symmetrical Node Puzzles for Linear  ACL,k1

It is possible to arrange an ACLk1 linear link in a symmetrical flat circle.  By passing symmetrical 
groups of node crossings thru holes made in some bars, a puzzle like device can be made.  If the holes 
in the bars are big enough to allow for some clearance and are spaced just right then you can rotate the 
bars continuously in a group about the toroid axis.  When doing this rotation the circles appear to turn 
inside out too, but instead they just move from side to side through the torus space thereby making a 
nice optical illusion puzzle.  The motion seems hard to imagine, especially for puzzles with more a 
great number of circles, n, since it looks like the circles should collide but the motion is perfectly 
smooth.  In actuality each small segment of each circle rotates around segments of all the other circles. 
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Of course the 6 circle structure shown, at the left in Figure 5 (called 'Hexaka') cannot be perfectly flat 
when in the flat position, since the circles have thickness and pass over each other at the nodes.  This 
works for linear links but probably would not work for a Rogue link, especially as n increases and the 
Rogues become more unmovable.  When the bars turn 90 degrees then the figure emulates a spherical 
shape with open areas at the poles.  The idea can be extended.  Imagine that a large number of very thin
ACLk1 circles are placed closely in a flat circular array as seen at lower right in Figure 4.  If some 
method of holding the nodes symmetrically existed this circle shape could be folded into a spherical 
shape as seen at top right in Figure 4.  Continuing the folding would return it to a flat circle shape.  The
flat circle shape has a single node in the center where a concentration of all the circles pass over each 
other while the spherical shape has two opposed polar nodes where this happens.

Non Linear ACLk1 or Rogue Links

A non linear or Rogue ACLk1 cannot be manipulated so that the centers of its circles all lie on a straight 
line.  Figure 6, presented both as a model and as a plane projection, consists of 7 circles and is an ACLk1
Rogue link.  This appears to be the smallest possible Rogue link.  A rogue link also satisfies the 
definition of a prime where no two links can be made close.  This rogue link is designated 7rp.  It 
always has the centers of its circles in a non linear arrangement.  

Figure 6

Here is the reasoning for why Rogue links must exist.  From the above discussion about linear linkages 
we know that any linear prime can have up to 2n^2 unique permutation arrangements.  Since n integers 
can be arranged left to right in n!  ways this means that n!-(2n^2) of the possible attempted linear 
arrangements for a linear prime will not allow the centers of their circles to lie in an exact line and are 
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candidates for making an n+1 rogue link, with this number increasing exponentially as n increases 
since n!-(2n^2) increases much faster than 2n^2.   You can create a Rogue prime by putting a linear 
prime into one of these non linear attempted ‘CC’ arrangements.   Find a position where there is no 
dangling naked links, then add a new link by linking it through all the circles very randomly.   If this 
new linkage can be manipulated to form a linear prime you can try linking another new link in a 
different ‘CC’ way.  Repeat this process until you get a rogue prime.  The circles should be thin enough 
to be sure that their d/D thickness ratio does not prevent manipulation into a linear array.  Once you 
have created a rogue prime this way way you can always make a larger one in a similar manner  This 
method was attempted with a 5 prime but always resulted in a 6 prime not a Rogue prime.  Then when 
it was attempted with a 6 prime a Rogue prime, 7rp, was the result as shown in Figure 5.  At this writing
a simple construction code for Rogue primes has been developed but not considered good enough to 
present here.  

An open question is to prove existence or nonexistence of, or to find an example of the smallest 
number of circles required to make a lock link.  None of the circles of a lock link can be folded or laid 
over.  A true lock link should allow d/D to become smaller and smaller and stay locked.   A procedure 
for trying to make a lock link is to continure adding circles to a rogue link to make a more and more 
non linear rogue link such that the centers of the circles require 3 dimensions and cannot be laid flat.

Figure 7

Circle link architecture

Figure 6 shows a possible way to produce a link that can have its circle centers lie in a plane but not in 
a line.  It proposes to link 5 primes in a 2 dimensional grid pattern.  This might result in a rogue prime. 
It shows another way of thinking about ACLk1 set architectures.  What kind of permutations, and twist, 
fold, or other properties the resulting linkage would have is unknown. 

Self organizing of close links

Close links always gather together in their own groups.  As the circles are made thicker this effect 
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becomes more pronounced.  The reason has to do with geometry.  The close circles in a group occupy 
the least volume when they are close to each other.  They tend to exclude links that twist the opposite 
way.  The links in a close link all twist the same way causing like twisted circles to gather in groups 
and is a natural geometrical property of self organization in ACLk1 architectures.
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